Computer Graphics & Visual Computing (CGVC) 2018
Permanent URI for this collection
Browse
Browsing Computer Graphics & Visual Computing (CGVC) 2018 by Subject "Computer graphics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Deep Learning Approach to No-Reference Image Quality Assessment For Monte Carlo Rendered Images(The Eurographics Association, 2018) Whittle, Joss; Jones, Mark W.; {Tam, Gary K. L. and Vidal, FranckIn Full-Reference Image Quality Assessment (FR-IQA) images are compared with ground truth images that are known to be of high visual quality. These metrics are utilized in order to rank algorithms under test on their image quality performance. Throughout the progress of Monte Carlo rendering processes we often wish to determine whether images being rendered are of sufficient visual quality, without the availability of a ground truth image. In such cases FR-IQA metrics are not applicable and we instead must utilise No-Reference Image Quality Assessment (NR-IQA) measures to make predictions about the perceived quality of unconverged images. In this work we propose a deep learning approach to NR-IQA, trained specifically on noise from Monte Carlo rendering processes, which significantly outperforms existing NR-IQA methods and can produce quality predictions consistent with FR-IQA measures that have access to ground truth images.Item Knowledge-based Discovery of Transportation Object Properties by Fusing Multi-modal GIS Data(The Eurographics Association, 2018) Maroun, Pedro Eid; Mudur, Sudhir; Popa, Tiberiu; {Tam, Gary K. L. and Vidal, Franck3D models of transportation objects like a road, bridge, underpass, etc. are required in many domains including military training, land development, etc. While remote sensed images and LiDaR data can be used to create approximate 3D representations, detailed 3D representations are difficult to create automatically. Instead, interactive tools are used with rather laborious effort. For example, the top commercial interactive model generator we tried required 94 parameters in all for different bridge types. In this paper, we take a different path.We automatically derive these parameter values from GIS (Geographic Information Systems) data, which normally contains detailed information of these objects, but often only implicitly. The framework presented here transforms GIS data into a knowledge base consisting of assertions. Spatial/numeric relations are handled through plug-ins called property extractors whose results get added to the knowledge base, used by a reasoning engine to infer object properties. A number of properties have to be extracted from images, and are dependent on the accuracy of computer vision methods. While a comprehensive property extractor mechanism is work in progress, . a prototype implementation illustrates our framework for bridges with GIS data from the real world. To the best of our knowledge, our framework is the first to integrate knowledge inference and uncertainty for extracting landscape object properties by fusing facts from multi-modal GIS data sources.