VCBM 2023: Eurographics Workshop on Visual Computing for Biology and Medicine
Permanent URI for this collection
Browse
Browsing VCBM 2023: Eurographics Workshop on Visual Computing for Biology and Medicine by Subject "Computer graphics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bio-Sketch: A New Medium for Interactive Storytelling Illustrated by the Phenomenon of Infection(The Eurographics Association, 2023) Olivier, Pauline; Chabrier, Renaud; Memari, Pooran; Coll, Jean-Luc; Cani, Marie-Paule; Hansen, Christian; Procter, James; Renata G. Raidou; Jönsson, Daniel; Höllt, ThomasIn the field of biology, digital illustrations play a crucial role in conveying complex phenomena, allowing for idealized shapes and motion, in contrast to data visualization. In the absence of suitable media, scientists often rely on oversimplified 2D figures or have to call in professional artists to create better illustrations, which can be limiting. We introduce Bio-Sketch, a novel progressive sketching system designed to ease the creation of animated illustrations, as exemplified here in the context of the infection phenomenon. Our solution relies on a new progressive sketching paradigm that seamlessly combines 3D modeling and pattern-based shape distribution to create background volume and temporal animation control. The elements created can be assembled into a complex scenario, enabling narrative design experiments for educational applications in biology. Our results and first feedback from experts in illustration and biology demonstrate the potential of Bio-Sketch to assist communication on the infection phenomenon, helping to bridge the gap between expert and non-expert audiences.Item Visual Analytics to Support Treatment Decisions in Late-Stage Melanoma Patients(The Eurographics Association, 2023) Pereira, Calida; Niemann, Uli; Braun, Andreas; Mengoni, Miriam; Tüting, Thomas; Preim, Bernhard; Meuschke, Monique; Hansen, Christian; Procter, James; Renata G. Raidou; Jönsson, Daniel; Höllt, ThomasWe present a visual analytics system to support treatment decisions in late-stage Melanoma patients. With the aim of improving patient outcomes, personalized treatment decisions based on individual characteristics and medical histories are crucial. The research focuses on the design and development of a visual analytics system tailored specifically for tumor boards, where multidisciplinary teams collaborate to make informed decisions. By leveraging a comprehensive database containing treatment and tumor stage progression information from over 1100 patients, the system provides healthcare professionals with a holistic overview and facilitates the analysis of individual cases as well as comparisons between multiple patients. The distinction between tumor board preparation systems and systems used during discussions is emphasized to ensure user-centric design and usability. Through the use of visual analytics techniques, complex relationships between treatment outcomes, temporal features, and patient-specific factors are explored, enabling clinicians to identify patterns and trends that may impact treatment decisions. The findings of this research contribute to the growing field of visual analytics in healthcare and have the potential to enhance treatment decision-making and patient care in late-stage cancer scenarios.