39-Issue 3
Permanent URI for this collection
Browse
Browsing 39-Issue 3 by Subject "Applied computing"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Infomages: Embedding Data into Thematic Images(The Eurographics Association and John Wiley & Sons Ltd., 2020) Coelho, Darius; Mueller, Klaus; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaRecent studies have indicated that visually embellished charts such as infographics have the ability to engage viewers and positively affect memorability. Fueled by these findings, researchers have proposed a variety of infographic design tools. However, these tools do not cover the entire design space. In this work, we identify a subset of infographics that we call infomages. Infomages are casual visuals of data in which a data chart is embedded into a thematic image such that the content of the image reflects the subject and the designer's interpretation of the data. Creating an effective infomage, however, can require a fair amount of design expertise and is thus out of reach for most people. In order to also afford non-artists with the means to design convincing infomages, we first study the principled design of existing infomages and identify a set of key chart embedding techniques. Informed by these findings we build a design tool that links web-scale image search with a set of interactive image processing tools to empower novice users with the ability to design a wide variety of infomages. As the embedding process might introduce some amount of visual distortion of the data our tool also aids users to gauge the amount of this distortion, if any. We experimentally demonstrate the usability of our tool and conclude with a discussion of infomages and our design tool.Item PAVED: Pareto Front Visualization for Engineering Design(The Eurographics Association and John Wiley & Sons Ltd., 2020) Cibulski, Lena; Mitterhofer, Hubert; May, Thorsten; Kohlhammer, Jörn; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaDesign problems in engineering typically involve a large solution space and several potentially conflicting criteria. Selecting a compromise solution is often supported by optimization algorithms that compute hundreds of Pareto-optimal solutions, thus informing a decision by the engineer. However, the complexity of evaluating and comparing alternatives increases with the number of criteria that need to be considered at the same time. We present a design study on Pareto front visualization to support engineers in applying their expertise and subjective preferences for selection of the most-preferred solution. We provide a characterization of data and tasks from the parametric design of electric motors. The requirements identified were the basis for our development of PAVED, an interactive parallel coordinates visualization for exploration of multi-criteria alternatives. We reflect on our user-centered design process that included iterative refinement with real data in close collaboration with a domain expert as well as a summative evaluation in the field. The results suggest a high usability of our visualization as part of a real-world engineering design workflow. Our lessons learned can serve as guidance to future visualization developers targeting multi-criteria optimization problems in engineering design or alternative domains.Item SeqDynamics: Visual Analytics for Evaluating Online Problem-solving Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2020) Xia, Meng; Xu, Min; Lin, Chuan-en; Cheng, Ta Ying; Qu, Huamin; Ma, Xiaojuan; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaProblem-solving dynamics refers to the process of solving a series of problems over time, from which a student's cognitive skills and non-cognitive traits and behaviors can be inferred. For example, we can derive a student's learning curve (an indicator of cognitive skill) from the changes in the difficulty level of problems solved, or derive a student's self-regulation patterns (an example of non-cognitive traits and behaviors) based on the problem-solving frequency over time. Few studies provide an integrated overview of both aspects by unfolding the problem-solving process. In this paper, we present a visual analytics system named SeqDynamics that evaluates students' problem-solving dynamics from both cognitive and non-cognitive perspectives. The system visualizes the chronological sequence of learners' problem-solving behavior through a set of novel visual designs and coordinated contextual views, enabling users to compare and evaluate problem-solving dynamics on multiple scales. We present three scenarios to demonstrate the usefulness of SeqDynamics on a real-world dataset which consists of thousands of problem-solving traces. We also conduct five expert interviews to show that SeqDynamics enhances domain experts' understanding of learning behavior sequences and assists them in completing evaluation tasks efficiently.