39-Issue 3
Permanent URI for this collection
Browse
Browsing 39-Issue 3 by Subject "Computing methodologies"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Hairy Slices II: Depth Cues for Visualizing 3D Streamlines Through Cutting Planes(The Eurographics Association and John Wiley & Sons Ltd., 2020) Stevens, Andrew H.; Ware, Colin; Butkiewicz, Thomas; Rogers, David; Abram, Greg; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaVisualizing 3D vector fields is challenging because of occlusion problems and the difficulty of providing depth cues that adequately support the perception of direction of flow lines in 3D space. One of the depth cues that has proven most valuable for the perception of other kinds of 3D data, notably 3D networks and 3D point clouds, is structure-from-motion (also called the Kinetic Depth Effect); another powerful depth cue is stereoscopic viewing. We carried out an experiment of the perception of direction for short streamlines passing through a cutting plane. The conditions included viewing with and without structurefrom- motion and with and without stereoscopic depth. Conditions also include comparing streamtubes to lines. The results show that for this particular task, stereo provided an effective depth cue, but structure-from-motion did not. Ringed streamtubes and streamcones provided good 3D direction information, even without stereoscopic viewing. We conclude with guidelines for viewing slices through vector fields.Item Infomages: Embedding Data into Thematic Images(The Eurographics Association and John Wiley & Sons Ltd., 2020) Coelho, Darius; Mueller, Klaus; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaRecent studies have indicated that visually embellished charts such as infographics have the ability to engage viewers and positively affect memorability. Fueled by these findings, researchers have proposed a variety of infographic design tools. However, these tools do not cover the entire design space. In this work, we identify a subset of infographics that we call infomages. Infomages are casual visuals of data in which a data chart is embedded into a thematic image such that the content of the image reflects the subject and the designer's interpretation of the data. Creating an effective infomage, however, can require a fair amount of design expertise and is thus out of reach for most people. In order to also afford non-artists with the means to design convincing infomages, we first study the principled design of existing infomages and identify a set of key chart embedding techniques. Informed by these findings we build a design tool that links web-scale image search with a set of interactive image processing tools to empower novice users with the ability to design a wide variety of infomages. As the embedding process might introduce some amount of visual distortion of the data our tool also aids users to gauge the amount of this distortion, if any. We experimentally demonstrate the usability of our tool and conclude with a discussion of infomages and our design tool.Item Knowledge-Assisted Comparative Assessment of Breast Cancer using Dynamic Contrast-Enhanced Magnetic Resonance Imaging(The Eurographics Association and John Wiley & Sons Ltd., 2020) Nie, Kai; Baltzer, Pascal; Preim, Bernhard; Mistelbauer, Gabriel; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaBreast perfusion data are dynamic medical image data that depict perfusion characteristics of the investigated tissue. These data consist of a series of static datasets that are acquired at different time points and aggregated into time intensity curves (TICs) for each voxel. The characteristics of these TICs provide important information about a lesion's composition, but their analysis is time-consuming due to their large number. Subsequently, these TICs are used to classify a lesion as benign or malignant. This lesion scoring is commonly done manually by physicians and may therefore be subject to bias. We propose an approach that addresses both of these problems by combining an automated lesion classification with a visual confirmatory analysis, especially for uncertain cases. Firstly, we cluster the TICs of a lesion using ordering points to identify the clustering structure (OPTICS) and then visualize these clusters. Together with their relative size, they are added to a library. We then model fuzzy inference rules by using the lesion's TIC clusters as antecedents and its score as consequent. Using a fuzzy scoring system, we can suggest a score for a new lesion. Secondly, to allow physicians to confirm the suggestion in uncertain cases, we display the TIC clusters together with their spatial distribution and allow them to compare two lesions side by side. With our knowledge-assisted comparative visual analysis, physicians can explore and classify breast lesions. The true positive prediction accuracy of our scoring system achieved 71.4% in one-fold cross-validation using 14 lesions.Item LOCALIS: Locally-adaptive Line Simplification for GPU-based Geographic Vector Data Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Amiraghdam, Alireza; Diehl, Alexandra; Pajarola, Renato; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaVisualization of large vector line data is a core task in geographic and cartographic systems. Vector maps are often displayed at different cartographic generalization levels, traditionally by using several discrete levels-of-detail (LODs). This limits the generalization levels to a fixed and predefined set of LODs, and generally does not support smooth LOD transitions. However, fast GPUs and novel line rendering techniques can be exploited to integrate dynamic vector map LOD management into GPU-based algorithms for locally-adaptive line simplification and real-time rendering. We propose a new technique that interactively visualizes large line vector datasets at variable LODs. It is based on the Douglas-Peucker line simplification principle, generating an exhaustive set of line segments whose specific subsets represent the lines at any variable LOD. At run time, an appropriate and view-dependent error metric supports screen-space adaptive LOD levels and the display of the correct subset of line segments accordingly. Our implementation shows that we can simplify and display large line datasets interactively. We can successfully apply line style patterns, dynamic LOD selection lenses, and anti-aliasing techniques to our line rendering.Item Quantitative Evaluation of Time-Dependent Multidimensional Projection Techniques(The Eurographics Association and John Wiley & Sons Ltd., 2020) Vernier, Eduardo Faccin; Garcia, Rafael; Silva, Iron Prando da; Comba, João L. D.; Telea, Alexandru C.; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaDimensionality reduction methods are an essential tool for multidimensional data analysis, and many interesting processes can be studied as time-dependent multivariate datasets. There are, however, few studies and proposals that leverage on the concise power of expression of projections in the context of dynamic/temporal data. In this paper, we aim at providing an approach to assess projection techniques for dynamic data and understand the relationship between visual quality and stability. Our approach relies on an experimental setup that consists of existing techniques designed for time-dependent data and new variations of static methods. To support the evaluation of these techniques, we provide a collection of datasets that has a wide variety of traits that encode dynamic patterns, as well as a set of spatial and temporal stability metrics that assess the quality of the layouts. We present an evaluation of 9 methods, 10 datasets, and 12 quality metrics, and elect the best-suited methods for projecting time-dependent multivariate data, exploring the design choices and characteristics of each method. Additional results can be found in the online benchmark repository. We designed our evaluation pipeline and benchmark specifically to be a live resource, open to all researchers who can further add their favorite datasets and techniques at any point in the future.Item QUESTO: Interactive Construction of Objective Functions for Classification Tasks(The Eurographics Association and John Wiley & Sons Ltd., 2020) Das, Subhajit; Xu, Shenyu; Gleicher, Michael; Chang, Remco; Endert, Alex; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaBuilding effective classifiers requires providing the modeling algorithms with information about the training data and modeling goals in order to create a model that makes proper tradeoffs. Machine learning algorithms allow for flexible specification of such meta-information through the design of the objective functions that they solve. However, such objective functions are hard for users to specify as they are a specific mathematical formulation of their intents. In this paper, we present an approach that allows users to generate objective functions for classification problems through an interactive visual interface. Our approach adopts a semantic interaction design in that user interactions over data elements in the visualization are translated into objective function terms. The generated objective functions are solved by a machine learning solver that provides candidate models, which can be inspected by the user, and used to suggest refinements to the specifications. We demonstrate a visual analytics system QUESTO for users to manipulate objective functions to define domain-specific constraints. Through a user study we show that QUESTO helps users create various objective functions that satisfy their goals.