Italian Chapter Conference 2020 - Smart Tools and Apps in computer Graphics
Permanent URI for this collection
Browse
Browsing Italian Chapter Conference 2020 - Smart Tools and Apps in computer Graphics by Subject "Human computer interaction (HCI)"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A First Step Towards Cage-based Deformation in Virtual Reality(The Eurographics Association, 2020) Scalas, Andreas; Zhu, Yuanju; Giannini, Franca; Lou, Ruding; Lupinetti, Katia; Monti, Marina; Mortara, Michela; Spagnuolo, Michela; Biasotti, Silvia and Pintus, Ruggero and Berretti, StefanoThe advent of low cost technologies makes the use of immersive virtual environments more interesting for several application contexts. 3D models are largely used in such environments for providing feelings of immersion and presence in the virtual world. 3D models are normally defined in dedicated authoring tools and then adapted to be used in the virtual environments; thus, any change in the model requires to loop back to the authoring tool for performing the wished modification and the successive adaptation processes. The availability of shape modification capabilities within the virtual environment can avoid the above modification-adaptation loop. To this aim, we present our first step in the development of a 3D modelling system in Virtual Reality. The shape modification is achieved through a cage-based deformation approach, applied to semantically enriched meshes, carrying annotated meaningful regions, thus allowing the direct selection and editing of significant object parts.Item Recognition, Modelling and Interactive Manipulation of Motifs or Symbols Represented by a Composition of Curves(The Eurographics Association, 2020) Romanengo, Chiara; Brunetto, Erika; Biasotti, Silvia; Catalano, Chiara Eva; Falcidieno, Bianca; Biasotti, Silvia and Pintus, Ruggero and Berretti, StefanoIn this work we introduce a method for the recognition, modelling and interactive manipulation of graphical motifs, symbols or artistic elements that are represented by a composition of plane curves. Our method bases on Hough transform (HT) concepts, in particular on its generalisation to algebraic curves. We recognise complex curves and their compositions starting from images or point clouds, we represent them in implicit or parametric form, and their parameters are calculated together with their relationships. Besides the recognition of curves and modelling by algebraic equations, we propose a visualisation and manipulation tool developed on a multi-touch table. The objective of this application is to support an interactive manipulation of any geometric motifs or symbols with or without imposing the constraints derived from the identified relations among the curve parameters. Finally, we validate the proposed method showing its application to three detailed case studies, which differ in type and creation mode.