Rendering 2023 - Symposium Track
Permanent URI for this collection
Browse
Browsing Rendering 2023 - Symposium Track by Subject "Reflectance modeling"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Microfacet Model for Specular Fluorescent Surfaces and Fluorescent Volume Rendering using Quantum Dots(The Eurographics Association, 2023) Benamira, Alexis; Pattanaik, Sumant; Ritschel, Tobias; Weidlich, AndreaFluorescent appearance of materials results from a complex light-material interaction phenomenon. The modeling of fluorescent material for rendering has only been addressed through measurement or for simple diffuse reflections, thus limiting the range of possible representable appearances. In this work, we introduce and model a fluorescent nanoparticle called a Quantum Dot (QD) for rendering. Our modeling of the Quantum Dots serves as a foundation to support two physically based rendering applications. First a fluorescent volumetric scattering model and second, the definition of a fluorescent specular microfacet scattering model. For the latter, we model the Fresnel energy reflection coefficient of a QD coated microfacet assuming specular fluorescence, thus making our approach easily integrable with any microfacet reflection model.Item SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions(The Eurographics Association, 2023) Kavoosighafi, Behnaz; Frisvad, Jeppe Revall; Hajisharif, Saghi; Unger, Jonas; Miandji, Ehsan; Ritschel, Tobias; Weidlich, AndreaWe propose a novel dictionary-based representation learning model for Bidirectional Texture Functions (BTFs) aiming at compact storage, real-time rendering performance, and high image quality. Our model is trained once, using a small training set, and then used to obtain a sparse tensor containing the model parameters. Our technique exploits redundancies in the data across all dimensions simultaneously, as opposed to existing methods that use only angular information and ignore correlations in the spatial domain. We show that our model admits efficient angular interpolation directly in the model space, rather than the BTF space, leading to a notably higher rendering speed than in previous work. Additionally, the high quality-storage cost tradeoff enabled by our method facilitates controlling the image quality, storage cost, and rendering speed using a single parameter, the number of coefficients. Previous methods rely on a fixed number of latent variables for training and testing, hence limiting the potential for achieving a favorable quality-storage cost tradeoff and scalability. Our experimental results demonstrate that our method outperforms existing methods both quantitatively and qualitatively, as well as achieving a higher compression ratio and rendering speed.