SGP11: Eurographics Symposium on Geometry Processing
Permanent URI for this collection
Browse
Browsing SGP11: Eurographics Symposium on Geometry Processing by Subject "Computer graphics [I.3.5]"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Skeleton Computation of Orthogonal Polyhedra(The Eurographics Association and Blackwell Publishing Ltd., 2011) Martinez, Jonas; Vigo, Marc; Pla-Garcia, Nuria; Mario Botsch and Scott SchaeferSkeletons are powerful geometric abstractions that provide useful representations for a number of geometric operations. The straight skeleton has a lower combinatorial complexity compared with the medial axis. Moreover, while the medial axis of a polyhedron is composed of quadric surfaces the straight skeleton just consist of planar faces. Although there exist several methods to compute the straight skeleton of a polygon, the straight skeleton of polyhedra has been paid much less attention. We require to compute the skeleton of very large datasets storing orthogonal polyhedra. Furthermore, we need to treat geometric degeneracies that usually arise when dealing with orthogonal polyhedra. We present a new approach so as to robustly compute the straight skeleton of orthogonal polyhedra. We follow a geometric technique that works directly with the boundary of an orthogonal polyhedron. Our approach is output sensitive with respect to the number of vertices of the skeleton and solves geometric degeneracies. Unlike the existing straight skeleton algorithms that shrink the object boundary to obtain the skeleton, our algorithm relies on the plane sweep paradigm. The resulting skeleton is only composed of axis-aligned and 45 rotated planar faces and edges.