Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids
Loading...
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ACM
Abstract
We present a novel up-resing technique for generating high-resolution liquids based on scene flow estimation using deep neural networks. Our approach infers and synthesizes small- and large-scale details solely from a low-resolution particle-based liquid simulation. The proposed network leverages neighborhood contributions to encode inherent liquid properties throughout convolutions. We also propose a particle-based approach to interpolate between liquids generated from varying simulation discretizations using a state-of-the-art bidirectional optical flow solver method for fluids in addition with a novel key-event topological alignment constraint. In conjunction with the neighborhood contributions, our loss formulation allows the inference model throughout epochs to reward important differences in regard to significant gaps in simulation discretizations. Even when applied in an untested simulation setup, our approach is able to generate plausible high-resolution details. Using this interpolation approach and the predicted displacements, our approach combines the input liquid properties with the predicted motion to infer semi-Lagrangian advection. We furthermore showcase how the proposed interpolation approach can facilitate generating large simulation datasets with a subset of initial condition parameters.
Description
@inproceedings{10.1145:3480147,
booktitle = {Proceedings of the ACM on Computer Graphics and Interactive Techniques},
editor = {Narain, Rahul and Neff, Michael and Zordan, Victor},
title = {{Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids}},
author = {Roy, Bruno and Poulin, Pierre and Paquette, Eric},
year = {2021},
publisher = {ACM},
ISSN = {2577-6193},
ISBN = {},
DOI = {10.1145/3480147}
}