Interactive Rendering with Coherent Ray Tracing
No Thumbnail Available
Date
2001
Journal Title
Journal ISSN
Volume Title
Publisher
Blackwell Publishers Ltd and the Eurographics Association
Abstract
For almost two decades researchers have argued that ray tracing will eventually become faster than the rasterization technique that completely dominates todays graphics hardware. However, this has not happened yet. Ray tracing is still exclusively being used for off-line rendering of photorealistic images and it is commonly believed that ray tracing is simply too costly to ever challenge rasterization-based algorithms for interactive use. However, there is hardly any scientific analysis that supports either point of view. In particular there is no evidence of where the crossover point might be, at which ray tracing would eventually become faster, or if such a point does exist at all.This paper provides several contributions to this discussion: We first present a highly optimized implementation of a ray tracer that improves performance by more than an order of magnitude compared to currently available ray tracers. The new algorithm make better use of computational resources such as caches and SIMD instructions and better exploits image and object space coherence. Secondly, we show that this software implementation can challenge and even outperform high-end graphics hardware in interactive rendering performance for complex environments. We also provide an brief overview of the benefits of ray tracing over rasterization algorithms and point out the potential of interactive ray tracing both in hardware and software.
Description
@article{10.1111:1467-8659.00508,
journal = {Computer Graphics Forum},
title = {{Interactive Rendering with Coherent Ray Tracing}},
author = {Wald, Ingo and Slusallek, Philipp and Benthin, Carsten and Wagner, Markus},
year = {2001},
publisher = {Blackwell Publishers Ltd and the Eurographics Association},
ISSN = {1467-8659},
DOI = {10.1111/1467-8659.00508}
}