Non-Separable Multi-Dimensional Network Flows for Visual Computing

dc.contributor.authorEhm, Viktoriaen_US
dc.contributor.authorCremers, Danielen_US
dc.contributor.authorBernard, Florianen_US
dc.contributor.editorSingh, Gurpriten_US
dc.contributor.editorChu, Mengyu (Rachel)en_US
dc.date.accessioned2023-05-03T06:05:54Z
dc.date.available2023-05-03T06:05:54Z
dc.date.issued2023
dc.description.abstractFlows in networks (or graphs) play a significant role in numerous computer vision tasks. The scalar-valued edges in these graphs often lead to a loss of information and thereby to limitations in terms of expressiveness. For example, oftentimes highdimensional data (e.g. feature descriptors) are mapped to a single scalar value (e.g. the similarity between two feature descriptors). To overcome this limitation, we propose a novel formalism for non-separable multi-dimensional network flows. By doing so, we enable an automatic and adaptive feature selection strategy - since the flow is defined on a per-dimension basis, the maximizing flow automatically chooses the best matching feature dimensions. As a proof of concept, we apply our formalism to the multi-object tracking problem and demonstrate that our approach outperforms scalar formulations on the MOT16 benchmark in terms of robustness to noise.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationEurographics 2023 - Posters
dc.identifier.doi10.2312/egp.20231028
dc.identifier.isbn978-3-03868-211-0
dc.identifier.issn1017-4656
dc.identifier.pages15-16
dc.identifier.pages2 pages
dc.identifier.urihttps://doi.org/10.2312/egp.20231028
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20231028
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Theory of computation -> Design and analysis of algorithms; Theory and algorithms for application domains
dc.subjectTheory of computation
dc.subjectDesign and analysis of algorithms
dc.subjectTheory and algorithms for application domains
dc.titleNon-Separable Multi-Dimensional Network Flows for Visual Computingen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
015-016.pdf
Size:
230.5 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1010_poster_pdf.pdf
Size:
24.11 MB
Format:
Adobe Portable Document Format