Triangulations with Locally Optimal Steiner Points

dc.contributor.authorErten, Haleen_US
dc.contributor.authorUengoer, Alperen_US
dc.contributor.editorAlexander Belyaev and Michael Garlanden_US
dc.date.accessioned2014-01-29T09:43:11Z
dc.date.available2014-01-29T09:43:11Z
dc.date.issued2007en_US
dc.description.abstractWe present two new Delaunay refinement algorithms, the second an extension of the first. For a given input domain (a set of points in the plane or a planar straight line graph), and a threshold angle a, the Delaunay refinement algorithms compute triangulations that have all angles at least a. Our algorithms have the same theoretical guarantees as the previous Delaunay refinement algorithms. The original Delaunay refinement algorithm of Ruppert is proven to terminate with size-optimal quality triangulations for aen_US
dc.description.seriesinformationGeometry Processingen_US
dc.identifier.isbn978-3-905673-46-3en_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttps://doi.org/10.2312/SGP/SGP07/143-152en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): F.2.2 [Nonnumerical Algorithms and Problems]: Geometrical problems and computations I.3.5 [Computational Geometry and Object Modeling]: Geometric algorithms, languages, and systemsen_US
dc.titleTriangulations with Locally Optimal Steiner Pointsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
143-152.pdf
Size:
699.43 KB
Format:
Adobe Portable Document Format