Computing Fast and Accurate Decision Boundary Maps

dc.contributor.authorGrosu, Cristianen_US
dc.contributor.authorWang, Yuen_US
dc.contributor.authorTelea, Alexandruen_US
dc.contributor.editorEl-Assady, Mennatallahen_US
dc.contributor.editorSchulz, Hans-Jörgen_US
dc.date.accessioned2024-05-21T08:29:54Z
dc.date.available2024-05-21T08:29:54Z
dc.date.issued2024
dc.description.abstractDecision boundary maps (DBMs) are image representations of the behavior of trained machine learning classification models. They are used in examining how the model partitions its data space into decision zones separated by decision boundaries and how this partition is influenced by the training data. However, all current DBM methods require significant computational effort, which precludes their use in interactive visual analytics scenarios. We present FastDBM, a set of techniques for the fast computation of DBMs. Our methods can accelerate any existing DBM algorithm by over one order of magnitude, yield results very similar to the original DBM methods, have a single parameter to set (with good presets), and are simple to implement. We demonstrate our method on various combinations of DBM techniques, datasets, and classification models.en_US
dc.description.sectionheadersVisual Analytics Methods and Approaches
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.identifier.doi10.2312/eurova.20241109
dc.identifier.isbn978-3-03868-253-0
dc.identifier.pages6 pages
dc.identifier.urihttps://doi.org/10.2312/eurova.20241109
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/eurova20241109
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing->Visualization design and evaluation methods
dc.subjectHuman centered computing
dc.subjectVisualization design and evaluation methods
dc.titleComputing Fast and Accurate Decision Boundary Mapsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
03_eurova20241109.pdf
Size:
4.58 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
5820-i7.pdf
Size:
4.16 MB
Format:
Adobe Portable Document Format
Collections