Revisiting Categorical Color Perception in Scatterplots: Sequential, Diverging, and Categorical Palettes

dc.contributor.authorTseng, Chinen_US
dc.contributor.authorWang, Arran Zeyuen_US
dc.contributor.authorQuadri, Ghulam Jilanien_US
dc.contributor.authorSzafir, Danielle Albersen_US
dc.contributor.editorTominski, Christianen_US
dc.contributor.editorWaldner, Manuelaen_US
dc.contributor.editorWang, Beien_US
dc.date.accessioned2024-05-17T18:48:18Z
dc.date.available2024-05-17T18:48:18Z
dc.date.issued2024
dc.description.abstractExisting guidelines for categorical color selection are heuristic, often grounded in intuition rather than empirical studies of readers' abilities. While design conventions recommend palettes maximize hue differences, more recent exploratory findings indicate other factors, such as lightness, may play a role in effective categorical palette design. We conducted a crowdsourced experiment on mean value judgments in multi-class scatterplots using five color palette families-single-hue sequential, multihue sequential, perceptually-uniform multi-hue sequential, diverging, and multi-hue categorical-that differ in how they manipulate hue and lightness. Participants estimated relative mean positions in scatterplots containing 2 to 10 categories using 20 colormaps. Our results confirm heuristic guidance that hue-based categorical palettes are most effective. However, they also provide additional evidence that scalable categorical encoding relies on more than hue variance.en_US
dc.description.sectionheadersMerge Trees, Uncertainty, and Studies
dc.description.seriesinformationEuroVis 2024 - Short Papers
dc.identifier.doi10.2312/evs.20241073
dc.identifier.isbn978-3-03868-251-6
dc.identifier.pages5 pages
dc.identifier.urihttps://doi.org/10.2312/evs.20241073
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/evs20241073
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Information visualization; Empirical studies in visualization
dc.subjectHuman centered computing → Information visualization
dc.subjectEmpirical studies in visualization
dc.titleRevisiting Categorical Color Perception in Scatterplots: Sequential, Diverging, and Categorical Palettesen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
17_evs20241073.pdf
Size:
510.66 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1014-i7.mp4
Size:
6.58 MB
Format:
Video MP4
Collections