A GPU-based Out-of-core Architecture for Interactive Visualization of AMR Time Series Data

dc.contributor.authorAlexandre-Barff, Welcomeen_US
dc.contributor.authorDeleau, Hervéen_US
dc.contributor.authorSarton, Jonathanen_US
dc.contributor.authorLedoux, Francken_US
dc.contributor.authorLucas, Laurenten_US
dc.contributor.editorBujack, Roxanaen_US
dc.contributor.editorPugmire, Daviden_US
dc.contributor.editorReina, Guidoen_US
dc.date.accessioned2023-06-10T05:51:56Z
dc.date.available2023-06-10T05:51:56Z
dc.date.issued2023
dc.description.abstractThis paper presents a scalable approach for large-scale Adaptive Mesh Refinement (AMR) time series interactive visualization. We can define AMR data as a dynamic gridding format of cells hierarchically refined from a computational domain described in this study as a regular Cartesian grid. This adaptive feature is essential for tracking time-dependent evolutionary phenomena and makes the AMR format an essential representation for 3D numerical simulations. However, the visualization of numerical simulation data highlights one critical issue: the significant increases in generated data memory footprint reaching petabytes, thus greatly exceeding the memory capabilities of the most recent graphics hardware. Therefore, the question is how to access this massive data - AMR time series in particular - for interactive visualization on a simple workstation. To overcome this main problem, we present an out-of-core GPU-based architecture. Our proposal is a cache system based on an ad-hoc bricking identified by a Space-Filling Curve (SFC) indexing and managed by a GPU-based page table that loads required AMR data on-the-fly from disk to GPU memory.en_US
dc.description.sectionheadersFirst Session
dc.description.seriesinformationEurographics Symposium on Parallel Graphics and Visualization
dc.identifier.doi10.2312/pgv.20231080
dc.identifier.isbn978-3-03868-215-8
dc.identifier.issn1727-348X
dc.identifier.pages1-11
dc.identifier.pages11 pages
dc.identifier.urihttps://doi.org/10.2312/pgv.20231080
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/pgv20231080
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing -> Scientific visualization
dc.subjectHuman centered computing
dc.subjectScientific visualization
dc.titleA GPU-based Out-of-core Architecture for Interactive Visualization of AMR Time Series Dataen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
001-011.pdf
Size:
8.03 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1004-file-i6.mp4
Size:
9.94 MB
Format:
Unknown data format