A Primal-to-Primal Discretization of Exterior Calculus on Polygonal Meshes

dc.contributor.authorPtackova, Lenkaen_US
dc.contributor.authorVelho, Luizen_US
dc.contributor.editorJakob Andreas Bærentzen and Klaus Hildebrandten_US
dc.date.accessioned2017-07-02T17:44:41Z
dc.date.available2017-07-02T17:44:41Z
dc.date.issued2017
dc.description.abstractDiscrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. We present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it obeys the Leibniz rule. Based on this wedge product, we derive a novel primal-primal Hodge star operator, which then leads to a discrete version of the contraction operator. We show preliminary results indicating the numerical convergence of our discretization to each one of these operators.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationSymposium on Geometry Processing 2017- Posters
dc.identifier.doi10.2312/sgp.20171204
dc.identifier.isbn978-3-03868-047-5
dc.identifier.issn1727-8384
dc.identifier.pages7-8
dc.identifier.urihttps://doi.org/10.2312/sgp.20171204
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sgp20171204
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subject
dc.subject> Mesh geometry models
dc.titleA Primal-to-Primal Discretization of Exterior Calculus on Polygonal Meshesen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
007-008.pdf
Size:
473.24 KB
Format:
Adobe Portable Document Format