Neural Denoising with Layer Embeddings

dc.contributor.authorMunkberg, Jacoben_US
dc.contributor.authorHasselgren, Jonen_US
dc.contributor.editorDachsbacher, Carsten and Pharr, Matten_US
dc.date.accessioned2020-06-28T15:23:34Z
dc.date.available2020-06-28T15:23:34Z
dc.date.issued2020
dc.description.abstractWe propose a novel approach for denoising Monte Carlo path traced images, which uses data from individual samples rather than relying on pixel aggregates. Samples are partitioned into layers, which are filtered separately, giving the network more freedom to handle outliers and complex visibility. Finally the layers are composited front-to-back using alpha blending. The system is trained end-to-end, with learned layer partitioning, filter kernels, and compositing. We obtain similar image quality as recent state-of-the-art sample based denoisers at a fraction of the computational cost and memory requirements.en_US
dc.description.number4
dc.description.sectionheadersDenoising and Filtering
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume39
dc.identifier.doi10.1111/cgf.14049
dc.identifier.issn1467-8659
dc.identifier.pages1-12
dc.identifier.urihttps://doi.org/10.1111/cgf.14049
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14049
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputing methodologies
dc.subjectRay tracing
dc.subjectNeural networks
dc.titleNeural Denoising with Layer Embeddingsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
v39i4pp001-012.pdf
Size:
24.58 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
supplemental_camera.zip
Size:
116.21 MB
Format:
Zip file
Collections