Quality Metrics to Guide Visual Analysis of High Dimensional Genomics Data

dc.contributor.authorFernstad, Sara Johanssonen_US
dc.contributor.authorMacquisten, Alexanderen_US
dc.contributor.authorBerrington, Janeten_US
dc.contributor.authorEmbleton, Nicholasen_US
dc.contributor.authorStewart, Christopheren_US
dc.contributor.editorTurkay, Cagatay and Vrotsou, Katerinaen_US
dc.date.accessioned2020-05-24T13:31:30Z
dc.date.available2020-05-24T13:31:30Z
dc.date.issued2020
dc.description.abstractStudies of genome sequenced data are increasingly common in many domains. Technological advances enable detection of hundreds of thousands of biological entities in samples, resulting in extremely high dimensional data. To enable exploration and understanding of such data, efficient visual analysis approaches are needed that take domain and data specific requirements into account. Based on a survey with bioscience experts, this paper suggests a categorisation and a set of quality metrics to identify patterns of interest, which can be used as guidance in visual analysis, as demonstrated in the paper.en_US
dc.description.sectionheadersVisual Analysis of High Dimensional and Temporal Data
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.identifier.doi10.2312/eurova.20201083
dc.identifier.isbn978-3-03868-116-8
dc.identifier.issn2664-4487
dc.identifier.pages31-35
dc.identifier.urihttps://doi.org/10.2312/eurova.20201083
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20201083
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/]
dc.subjectHuman centered computing
dc.subjectVisual analytics
dc.subjectApplied computing
dc.subjectBioinformatics
dc.titleQuality Metrics to Guide Visual Analysis of High Dimensional Genomics Dataen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
031-035.pdf
Size:
4.54 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
1007-file1.pdf
Size:
5.5 MB
Format:
Adobe Portable Document Format
Collections