Control Points for Multivariate B-Spline Surfaces over Arbitrary Triangulations

dc.contributor.authorFong, Philipen_US
dc.contributor.authorSeidel, Hans-Peteren_US
dc.date.accessioned2014-10-21T06:23:20Z
dc.date.available2014-10-21T06:23:20Z
dc.date.issued1991en_US
dc.description.abstractThis paper describes first results of a test implementation that implements the new multivariate B-splines as recently developed by Dahmen et al. 10for quadratics and cubics. The surface scheme is based on blending functions and control points and allows the modelling of Ck? 1 -continuous piecewise polynomial surfaces of degree k over arbitrary triangulations of the parameter plane. The surface scheme exhibits both affine invariance and the convex hull property, and the control points can be used to manipulate the shape of the surface locally. Additional degrees of freedom in the underlying knot net allow for the modelling of discontinuities. Explicit formulas are given for the representation of polynomials and piecewise polynomials as linear combinations of B-splines.en_US
dc.description.number4en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume10en_US
dc.identifier.doi10.1111/1467-8659.1040309en_US
dc.identifier.issn1467-8659en_US
dc.identifier.pages309-317en_US
dc.identifier.urihttps://doi.org/10.1111/1467-8659.1040309en_US
dc.publisherBlackwell Science Ltd and the Eurographics Associationen_US
dc.titleControl Points for Multivariate B-Spline Surfaces over Arbitrary Triangulationsen_US
Files
Collections