Adaptive Rigidification of Discrete Shells
No Thumbnail Available
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ACM Association for Computing Machinery
Abstract
We present a method to improve the computation time of thin shell simulations by using adaptive rigidification to reduce the number of degrees of freedom. Our method uses a discretization independent metric for bending rates, and we derive a membrane strain rate to curvature rate equivalence that permits the use of a common threshold. To improve accuracy, we enhance the elastification oracle by considering both membrane and bending deformation to determine when to rigidify or elastify. Furthermore, we explore different approaches that are compatible with the previous work on adaptive rigidifcation and enhance the accuracy of the elastification on new contacts without increasing the computational overhead. Additionally, we propose a scaling approach that reduces the conditioning issues that arise from mixing rigid and elastic bodies in the same model.
Description
CCS Concepts: Computing methodologies -> Physical simulation; Interactive simulation cloth, shells, adaptive simulation, rigid bodies, finite element"
@inproceedings{10.1145:3606932,
booktitle = {Proceedings of the ACM on Computer Graphics and Interactive Techniques},
editor = {Wang, Huamin and Ye, Yuting and Victor Zordan},
title = {{Adaptive Rigidification of Discrete Shells}},
author = {Mercier-Aubin, Alexandre and Kry, Paul G.},
year = {2023},
publisher = {ACM Association for Computing Machinery},
ISSN = {2577-6193},
ISBN = {},
DOI = {10.1145/3606932}
}