Inverting Multidimensional Scaling Projections Using Data Point Multilateration

dc.contributor.authorBlumberg, Danielaen_US
dc.contributor.authorWang, Yuen_US
dc.contributor.authorTelea, Alexandruen_US
dc.contributor.authorKeim, Daniel A.en_US
dc.contributor.authorDennig, Frederik L.en_US
dc.contributor.editorEl-Assady, Mennatallahen_US
dc.contributor.editorSchulz, Hans-Jörgen_US
dc.date.accessioned2024-05-21T08:30:09Z
dc.date.available2024-05-21T08:30:09Z
dc.date.issued2024
dc.description.abstractCurrent inverse projection methods are often complex, hard to predict, and may require extensive parametrization. We present a new technique to compute inverse projections of Multidimensional Scaling (MDS) projections with minimal parametrization. We use mutilateration, a method used for geopositioning, to find data values for unknown 2D points, i.e., locations where no data point is projected. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D|−1 dimensional spaces given a minimum of |D| data points. We qualitatively and quantitatively compare our technique with existing inverse projection techniques on synthetic and real-world datasets using mean-squared errors (MSEs) and gradient maps. When MDS captures data distances well, our technique shows performance similar to existing approaches. While our method may show higher MSEs when inverting projected data samples, it produces smoother gradient maps, indicating higher predictability when inverting unseen points.en_US
dc.description.sectionheadersVisual Analytics Methods and Approaches
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.identifier.doi10.2312/eurova.20241112
dc.identifier.isbn978-3-03868-253-0
dc.identifier.pages6 pages
dc.identifier.urihttps://doi.org/10.2312/eurova.20241112
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/eurova20241112
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Visualization techniques
dc.subjectHuman centered computing → Visualization techniques
dc.titleInverting Multidimensional Scaling Projections Using Data Point Multilaterationen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
06_eurova20241112.pdf
Size:
5.59 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
7165-i7.pdf
Size:
5.1 MB
Format:
Adobe Portable Document Format
Collections