Accelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integration

dc.contributor.authorZorrilla, Fernandoen_US
dc.contributor.authorSappl, Johannesen_US
dc.contributor.authorRauch, Wolfgangen_US
dc.contributor.authorHarders, Matthiasen_US
dc.contributor.editorVidal, Franck P. and Tam, Gary K. L. and Roberts, Jonathan C.en_US
dc.date.accessioned2019-09-11T05:09:02Z
dc.date.available2019-09-11T05:09:02Z
dc.date.issued2019
dc.description.abstractSurface tension has a strong influence on the shape of fluid interfaces. We propose a method to calculate the corresponding forces efficiently. In contrast to several previous approaches, we discriminate to this end between surface and non-surface SPH particles. Our method effectively smooths the fluid interface, minimizing its curvature. We make use of an approach inspired by Monte Carlo integration to estimate local normals as well as curvatures, based on which the force can be calculated. The technique is applicable, but not limited to 2D and 3D simulations, and can be coupled with any common SPH formulation. It outperforms prior approaches with regard to total computation time per time step, while being stable and avoiding artifacts.en_US
dc.description.sectionheadersSimulation and Rendering
dc.description.seriesinformationComputer Graphics and Visual Computing (CGVC)
dc.identifier.doi10.2312/cgvc.20191260
dc.identifier.isbn978-3-03868-096-3
dc.identifier.pages75-83
dc.identifier.urihttps://doi.org/10.2312/cgvc.20191260
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/cgvc20191260
dc.publisherThe Eurographics Associationen_US
dc.subjectSPH fluid simulation
dc.subjectparticle classification
dc.subjectestimation of surface normal/tension/curvature
dc.titleAccelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integrationen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
075-083.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
video_paper1017.wmv
Size:
23.46 MB
Format:
Unknown data format