An Analysis of Quasi-Monte Carlo Integration Applied to the Transillumination Radiosity Method

dc.contributor.authorSzirmay-Kalos, Laszloen_US
dc.contributor.authorForis, Tiboren_US
dc.contributor.authorNeumann, Laszloen_US
dc.contributor.authorCsebfalvi, Balazsen_US
dc.date.accessioned2015-02-15T18:05:27Z
dc.date.available2015-02-15T18:05:27Z
dc.date.issued1997en_US
dc.description.abstractThis paper presents an enhanced transillumination radiosity method that can provide accurate solutions at relatively low computational cost. The proposed algorithm breaks down the double integral of the gathered power to an area integral that is computed analytically and to a directional integral that is evaluated by quasi-Monte Carlo techniques. Since the analytical integration results in a continuous function of finite variation, the quasi-Monte Carlo integration that follows the analytical integration will be efficient and its error can be bounded by the Koksma-Hlawka inequality. The paper also analyses the requirements of the convergence, presents theoretical error bounds and proposes error reduction techniques. The theoretical bounds are compared with simulation results.en_US
dc.description.number3en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume16en_US
dc.identifier.doi10.1111/1467-8659.00164en_US
dc.identifier.issn1467-8659en_US
dc.identifier.pagesC271-C281en_US
dc.identifier.urihttps://doi.org/10.1111/1467-8659.00164en_US
dc.publisherBlackwell Publishers Ltd and the Eurographics Associationen_US
dc.titleAn Analysis of Quasi-Monte Carlo Integration Applied to the Transillumination Radiosity Methoden_US
Files
Collections