Interactive Freeform Architectural Design with Nearly Developables and Cold Bent Glass

dc.contributor.authorGavriil, Konstantinos
dc.date.accessioned2021-12-01T11:40:46Z
dc.date.available2021-12-01T11:40:46Z
dc.date.issued2020-09-18
dc.description.abstractInteractive design of freeform architectural surface panelizations is at the coreof this PhD thesis. We provide the computational framework for dealing with two important types of paneling elements. Specifically, we focus on certain types of developable surfaces and cold bent glass panels, all relevant to contemporary freeform architecture.To this end, we initially present a novel method for increasing the developabilityof a B-spline surface. We use the property that the Gauss image of a developable surfaceis 1-dimensional and can be locally well approximated by circles. This is cast intoan algorithm for thinning the Gauss image by increasing the planarity of the Gaussimages of appropriate neighborhoods. A variation of the main method allows us totackle the problem of paneling a freeform architectural surface with developable panels,in particular enforcing rotational cylindrical, rotational conical and planar panels,which are the main preferred types of developable panels in architecture due to there duced cost of manufacturing. We are interested in near developability, rather than exact developability, so the optimization approach is sucient. The motivation behind this is the fact that most materials allow for a little bit of stretching and therefore developability needs not be satised to a high degree.One such material is glass which is the main focus of the second panelizationproblem of this thesis. Toughened glass can with stand higher stresses, and therefore allows initially planar glass panels to be elastically bent and xed at ambient temperatures to a curved frame. This process is called cold bending and it produces panels that can exhibit double curvature, providing a cost- and energy-ecient alternative of higher optical quality than traditional hot bent glass panels. However, it is very challenging to navigate the design space of cold bent glass panels due to the fragility of the material, which impedes the form-nding for practically feasible and aesthetically pleasing cold bent glass façades. We present an interactive, data-driven approachfor designing cold bent glass façades that can be seamlessly integrated into a typical architectural design pipeline. Our method allows non-expert users to interactively edit a parametric surface while providing real-time feedback on the deformed shape and maximum stress of cold bent glass panels. Designs are automatically rened to minimize several fairness criteria while maximal stresses are kept within glass limits.We achieve interactive frame rates by using a dierentiable mixture density network trained from more than a million simulations. Given a curved boundary, our regressionmodel is capable of handling multistable congurations and accurately predicting the equilibrium shape of the panel and its corresponding maximal stress. We show predictions are highly accurate and validate our results with a physical realization ofa cold bent glass surface. For both applications explored in this work, a plethora ofresults and examples are provided.en_US
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 675789 - Algebraic Representations in Computer-Aided Design for complEx Shapes (ARCADES), from the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, SFB-Transregio “Discretization in Geometry and Dynamics” through grant I 2978 of the Austrian Science Fund (FWF), and partially supported by KAUST baseline funding.en_US
dc.identifier.urihttps://doi.org/10.34726/hss.2020.82428
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/2633141
dc.language.isoen_USen_US
dc.publisherTU Wienen_US
dc.subjectarchitectural geometryen_US
dc.subjectcomputational designen_US
dc.subjectfabrication aware designen_US
dc.subjectinverse designen_US
dc.subjectdeep learningen_US
dc.subjectmechanical simulationen_US
dc.subjectcold bent glassen_US
dc.subjectdevelopable surfaceen_US
dc.titleInteractive Freeform Architectural Design with Nearly Developables and Cold Bent Glassen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
phd_thesis.pdf
Size:
57.64 MB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections