Exploring the Geometry of Swarm Intelligence: Negative Inertia and Ellipsoidal Search Space Evolution in PSO

dc.contributor.authorKrämer, Katharinaen_US
dc.contributor.authorMüller, Stefanen_US
dc.contributor.authorKosterhon, Michaelen_US
dc.contributor.editorEgger, Bernharden_US
dc.contributor.editorGünther, Tobiasen_US
dc.date.accessioned2025-09-24T10:38:30Z
dc.date.available2025-09-24T10:38:30Z
dc.date.issued2025
dc.description.abstractThis paper introduces a geometry-aware method for analyzing swarm behavior in Particle Swarm Optimization (PSO) based on ellipsoidal modeling. Inspired by the n-ball hitting probability, we propose an abstraction of the search space covered by particles over time. Using principal component analysis (PCA), we approximate the particle distribution at each iteration with ellipsoids, enabling a visual and quantitative assessment of how well the swarm explores and concentrates its search effort. We apply this technique to investigate a PSO variant with negative inertia weights, which has shown promising performance in prior empirical analysis. While negative inertia may appear counterintuitive, our ellipsoidal analysis reveals that it introduces oscillatory search dynamics that balance exploration and exploitation more effectively than standard strategies such as constant inertia or linear decreasing inertia. Our experiments include a six-dimensional medical image registration task and an illustrative two-dimensional Rastrigin function, which serves to visually demonstrate how the swarm structure evolves. The proposed analysis framework provides new insight into swarm dynamics and offers a tool for understanding and comparing the behavior of PSO variants beyond conventional performance metrics.en_US
dc.description.sectionheadersGeometry, Simulation, and Optimization
dc.description.seriesinformationVision, Modeling, and Visualization
dc.identifier.doi10.2312/vmv.20251246
dc.identifier.isbn978-3-03868-294-3
dc.identifier.pages10 pages
dc.identifier.urihttps://doi.org/10.2312/vmv.20251246
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/vmv20251246
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Mathematics of computing → Stochastic control and optimization; Computing methodologies → Visual analytics; Model verification and validation
dc.subjectMathematics of computing → Stochastic control and optimization
dc.subjectComputing methodologies → Visual analytics
dc.subjectModel verification and validation
dc.titleExploring the Geometry of Swarm Intelligence: Negative Inertia and Ellipsoidal Search Space Evolution in PSOen_US
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
vmv20251246.pdf
Size:
3.26 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
paper1035_1.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1035_2.zip
Size:
5.55 MB
Format:
Zip file
Collections