A 3 Cent Recognizer: Simple and Effective Retrieval and Classification of Mid-air Gestures from Single 3D Traces

dc.contributor.authorCaputo, Fabio Marcoen_US
dc.contributor.authorPrebianca, Pietroen_US
dc.contributor.authorCarcangiu, Alessandroen_US
dc.contributor.authorSpano, Lucio D.en_US
dc.contributor.authorGiachetti, Andreaen_US
dc.contributor.editorAndrea Giachetti and Paolo Pingi and Filippo Stancoen_US
dc.date.accessioned2017-09-11T06:59:20Z
dc.date.available2017-09-11T06:59:20Z
dc.date.issued2017
dc.description.abstractIn this paper we present a simple 3D gesture recognizer based on trajectory matching, showing its good performances in classification and retrieval of command gestures based on single hand trajectories. We demonstrate that further simplifications in porting the classic "1 dollar" algorithm approach from the 2D to the 3D gesture recognition and retrieval problems can result in very high classification accuracy and retrieval scores even on datasets with a large number of different gestures executed by different users. Furthermore, recognition can be good even with heavily subsampled path traces and with incomplete gestures.en_US
dc.description.sectionheadersGeometry Processing
dc.description.seriesinformationSmart Tools and Apps for Graphics - Eurographics Italian Chapter Conference
dc.identifier.doi10.2312/stag.20171221
dc.identifier.isbn978-3-03868-048-2
dc.identifier.pages9-15
dc.identifier.urihttps://doi.org/10.2312/stag.20171221
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/stag20171221
dc.publisherThe Eurographics Associationen_US
dc.subjectHuman
dc.subjectcentered computing
dc.subjectGestural input
dc.titleA 3 Cent Recognizer: Simple and Effective Retrieval and Classification of Mid-air Gestures from Single 3D Tracesen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
009-015.pdf
Size:
532.59 KB
Format:
Adobe Portable Document Format