Designing N-PolyVector Fields with Complex Polynomials

dc.contributor.authorDiamanti, Olgaen_US
dc.contributor.authorVaxman, Amiren_US
dc.contributor.authorPanozzo, Danieleen_US
dc.contributor.authorSorkine-Hornung, Olgaen_US
dc.contributor.editorThomas Funkhouser and Shi-Min Huen_US
dc.date.accessioned2015-03-03T12:41:39Z
dc.date.available2015-03-03T12:41:39Z
dc.date.issued2014en_US
dc.description.abstractWe introduce N-PolyVector fields, a generalization of N-RoSy fields for which the vectors are neither necessarily orthogonal nor rotationally symmetric. We formally define a novel representation for N-PolyVectors as the root sets of complex polynomials and analyze their topological and geometric properties. A smooth N-PolyVector field can be efficiently generated by solving a sparse linear system without integer variables. We exploit the flexibility of N-PolyVector fields to design conjugate vector fields, offering an intuitive tool to generate planar quadrilateral meshes.en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.identifier.doi10.1111/cgf.12426en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/cgf.12426en_US
dc.publisherThe Eurographics Association and John Wiley and Sons Ltd.en_US
dc.titleDesigning N-PolyVector Fields with Complex Polynomialsen_US
Files