Designing N-PolyVector Fields with Complex Polynomials
dc.contributor.author | Diamanti, Olga | en_US |
dc.contributor.author | Vaxman, Amir | en_US |
dc.contributor.author | Panozzo, Daniele | en_US |
dc.contributor.author | Sorkine-Hornung, Olga | en_US |
dc.contributor.editor | Thomas Funkhouser and Shi-Min Hu | en_US |
dc.date.accessioned | 2015-03-03T12:41:39Z | |
dc.date.available | 2015-03-03T12:41:39Z | |
dc.date.issued | 2014 | en_US |
dc.description.abstract | We introduce N-PolyVector fields, a generalization of N-RoSy fields for which the vectors are neither necessarily orthogonal nor rotationally symmetric. We formally define a novel representation for N-PolyVectors as the root sets of complex polynomials and analyze their topological and geometric properties. A smooth N-PolyVector field can be efficiently generated by solving a sparse linear system without integer variables. We exploit the flexibility of N-PolyVector fields to design conjugate vector fields, offering an intuitive tool to generate planar quadrilateral meshes. | en_US |
dc.description.seriesinformation | Computer Graphics Forum | en_US |
dc.identifier.doi | 10.1111/cgf.12426 | en_US |
dc.identifier.issn | 1467-8659 | en_US |
dc.identifier.uri | https://doi.org/10.1111/cgf.12426 | en_US |
dc.publisher | The Eurographics Association and John Wiley and Sons Ltd. | en_US |
dc.title | Designing N-PolyVector Fields with Complex Polynomials | en_US |