CUPID: Contextual Understanding of Prompt-conditioned Image Distributions

dc.contributor.authorZhao, Yayanen_US
dc.contributor.authorLi, Mingweien_US
dc.contributor.authorBerger, Matthewen_US
dc.contributor.editorAigner, Wolfgangen_US
dc.contributor.editorArchambault, Danielen_US
dc.contributor.editorBujack, Roxanaen_US
dc.date.accessioned2024-05-21T08:18:05Z
dc.date.available2024-05-21T08:18:05Z
dc.date.issued2024
dc.description.abstractWe present CUPID: a visualization method for the contextual understanding of prompt-conditioned image distributions. CUPID targets the visual analysis of distributions produced by modern text-to-image generative models, wherein a user can specify a scene via natural language, and the model generates a set of images, each intended to satisfy the user's description. CUPID is designed to help understand the resulting distribution, using contextual cues to facilitate analysis: objects mentioned in the prompt, novel, synthesized objects not explicitly mentioned, and their potential relationships. Central to CUPID is a novel method for visualizing high-dimensional distributions, wherein contextualized embeddings of objects, those found within images, are mapped to a low-dimensional space via density-based embeddings. We show how such embeddings allows one to discover salient styles of objects within a distribution, as well as identify anomalous, or rare, object styles. Moreover, we introduce conditional density embeddings, whereby conditioning on a given object allows one to compare object dependencies within the distribution. We employ CUPID for analyzing image distributions produced by large-scale diffusion models, where our experimental results offer insights on language misunderstanding from such models and biases in object composition, while also providing an interface for discovery of typical, or rare, synthesized scenes.en_US
dc.description.number3
dc.description.sectionheadersAI4Vis and Vis4AI
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume43
dc.identifier.doi10.1111/cgf.15086
dc.identifier.issn1467-8659
dc.identifier.pages12 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.15086
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf15086
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Visualization techniques; Visual analytics; Visualization theory, concepts and paradigms
dc.subjectHuman centered computing → Visualization techniques
dc.subjectVisual analytics
dc.subjectVisualization theory
dc.subjectconcepts and paradigms
dc.titleCUPID: Contextual Understanding of Prompt-conditioned Image Distributionsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
v43i3_11_cgf15086.pdf
Size:
10.24 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
1251-i8.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Collections