Variational Pose Prediction with Dynamic Sample Selection from Sparse Tracking Signals

dc.contributor.authorMilef, Nicholasen_US
dc.contributor.authorSueda, Shinjiroen_US
dc.contributor.authorKalantari, Nima Khademien_US
dc.contributor.editorMyszkowski, Karolen_US
dc.contributor.editorNiessner, Matthiasen_US
dc.date.accessioned2023-05-03T06:10:46Z
dc.date.available2023-05-03T06:10:46Z
dc.date.issued2023
dc.description.abstractWe propose a learning-based approach for full-body pose reconstruction from extremely sparse upper body tracking data, obtained from a virtual reality (VR) device. We leverage a conditional variational autoencoder with gated recurrent units to synthesize plausible and temporally coherent motions from 4-point tracking (head, hands, and waist positions and orientations). To avoid synthesizing implausible poses, we propose a novel sample selection and interpolation strategy along with an anomaly detection algorithm. Specifically, we monitor the quality of our generated poses using the anomaly detection algorithm and smoothly transition to better samples when the quality falls below a statistically defined threshold. Moreover, we demonstrate that our sample selection and interpolation method can be used for other applications, such as target hitting and collision avoidance, where the generated motions should adhere to the constraints of the virtual environment. Our system is lightweight, operates in real-time, and is able to produce temporally coherent and realistic motions.en_US
dc.description.number2
dc.description.sectionheadersCapturing Human Pose and Appearance
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume42
dc.identifier.doi10.1111/cgf.14767
dc.identifier.issn1467-8659
dc.identifier.pages359-369
dc.identifier.pages11 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.14767
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14767
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Neural networks; Motion processing; Virtual reality
dc.subjectComputing methodologies
dc.subjectNeural networks
dc.subjectMotion processing
dc.subjectVirtual reality
dc.titleVariational Pose Prediction with Dynamic Sample Selection from Sparse Tracking Signalsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
v42i2pp359-369_cgf14767.pdf
Size:
8.37 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1086_mm.mp4
Size:
450.36 MB
Format:
Unknown data format
Collections