Visual Predictive Analytics using iFuseML

dc.contributor.authorSehgal, Gunjanen_US
dc.contributor.authorRawat, Mrinalen_US
dc.contributor.authorGupta, Binduen_US
dc.contributor.authorGupta, Garimaen_US
dc.contributor.authorSharma, Geetikaen_US
dc.contributor.authorShroff, Gautamen_US
dc.contributor.editorChristian Tominski and Tatiana von Landesbergeren_US
dc.date.accessioned2018-06-02T17:56:57Z
dc.date.available2018-06-02T17:56:57Z
dc.date.issued2018
dc.description.abstractSolving a predictive analytics problem involves multiple machine learning tasks in a workflow. Directing such workflows efficiently requires an understanding of data so as to identify and handle missing values and outliers, compute feature correlations and to select appropriate models and hyper-parameters. While traditional machine learning techniques are capable of handling these challenges to a certain extent, visual analysis of data and results at each stage can significantly assist in optimal processing of the workflow. We present iFuseML , a visual interactive framework to support analysts in machine learning workflows via insightful data visualizations as well as natural language interfaces where appropriate. Our platform lets the user intuitively search and explore datasets, join relevant datasets using natural language queries, detect and visualize multidimensional outliers and explore feature relationships using Bayesian coordinated views. We also demonstrate how visualization assists in comparing prediction errors to guide ensemble models so as to generate more accurate predictions. We illustrate our framework using a house price dataset from Kaggle, where using iFuseML simplified the machine learning workflow and helped improve the resulting prediction accuracy.en_US
dc.description.sectionheadersAnalytics and Guidance
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.identifier.doi10.2312/eurova.20181106
dc.identifier.isbn978-3-03868-064-2
dc.identifier.pages13-17
dc.identifier.urihttps://doi.org/10.2312/eurova.20181106
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20181106
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectMachine learning
dc.subjectVisual analytics
dc.subjectPredictive analytics
dc.subjectModel ensembles
dc.titleVisual Predictive Analytics using iFuseMLen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
013-017.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Collections