Multi-Level-Memory Structures for Adaptive SPH Simulations

dc.contributor.authorWinchenbach, Reneen_US
dc.contributor.authorKolb, Andreasen_US
dc.contributor.editorSchulz, Hans-Jörg and Teschner, Matthias and Wimmer, Michaelen_US
dc.date.accessioned2019-09-29T06:46:04Z
dc.date.available2019-09-29T06:46:04Z
dc.date.issued2019
dc.description.abstractIn this paper we introduce a novel hash map-based sparse data structure for highly adaptive Smoothed Particle Hydrodynamics (SPH) simulations on GPUs. Our multi-level-memory structure is based on stacking multiple independent data structures, which can be created efficiently from the same particle data by utilizing self-similar particle orderings. Furthermore, we propose three neighbor list algorithms that improve performance, or significantly reduce memory requirements, when compared to Verlet-lists for the overall simulation. Overall, our proposed method significantly improves the performance of spatially adaptive methods, allows for the simulation of unbounded domains and reduces memory requirements without interfering with the simulation.en_US
dc.description.sectionheadersGPU
dc.description.seriesinformationVision, Modeling and Visualization
dc.identifier.doi10.2312/vmv.20191323
dc.identifier.isbn978-3-03868-098-7
dc.identifier.pages99-107
dc.identifier.urihttps://doi.org/10.2312/vmv.20191323
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/vmv20191323
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectMassively parallel and high
dc.subjectperformance simulations
dc.subjectPhysical simulation
dc.titleMulti-Level-Memory Structures for Adaptive SPH Simulationsen_US
Files
Original bundle
Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
099-107.pdf
Size:
11.16 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1009_code.zip
Size:
9.2 KB
Format:
Zip file
No Thumbnail Available
Name:
readme.txt
Size:
955 B
Format:
Plain Text
No Thumbnail Available
Name:
vmvvideo.mp4
Size:
131.69 MB
Format:
Unknown data format
Collections