Fractals and Quasi-Affine Transformations

dc.contributor.authorNehlig, P. W.en_US
dc.contributor.authorReveilles, J.-P.en_US
dc.date.accessioned2014-10-21T07:36:01Z
dc.date.available2014-10-21T07:36:01Z
dc.date.issued1995en_US
dc.description.abstractIn the continuum , contracting affine transformations have a unique fixed point. It is well known that this property is not preserved by dicretization and that the dynamics of discretized functions are very complicated. Discrete geometry allows us to start a theory for these dynamics and to illustrate some of their features by pictures. These pictures, rendered by a simple algorithm, reveal a very large spectrum of fractal structures, from the simplest to the intricatest.en_US
dc.description.number2en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume14en_US
dc.identifier.doi10.1111/1467-8659.1420147en_US
dc.identifier.issn1467-8659en_US
dc.identifier.pages147-157en_US
dc.identifier.urihttps://doi.org/10.1111/1467-8659.1420147en_US
dc.publisherBlackwell Science Ltd and the Eurographics Associationen_US
dc.titleFractals and Quasi-Affine Transformationsen_US
Files
Collections