Shadow Volumes on Programmable Graphics Hardware
dc.contributor.author | Brabec, Stefan | en_US |
dc.contributor.author | Seidel, Hans-Peter | en_US |
dc.date.accessioned | 2015-02-16T08:01:06Z | |
dc.date.available | 2015-02-16T08:01:06Z | |
dc.date.issued | 2003 | en_US |
dc.description.abstract | One of the best choices for fast, high quality shadows is the shadow volume algorithm. However, for real timeapplications the extraction of silhouette edges can significantly burden the CPU, especially with highly tessellatedinput geometry or when complex geometry shaders are applied.In this paper we show how this last, expensive part of the shadow volume method can be implemented on programmablegraphics hardware. This way, the originally hybrid shadow volumes algorithm can now be reformulatedas a purely hardware-accelerated approach.The benefits of this implementation is not only the increase in speed. Firstly, all computations now run on thesame hardware resulting in consistent precision within all steps of the algorithm. Secondly, programmable vertextransformations are no longer problematic when applied to shadow casting objects.Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture;I.3.3 [Computer Graphics]: Picture/Image Generation; I.3.7 [Computer Graphics]: Three-Dimensional Graphicsand Realism | en_US |
dc.description.number | 3 | en_US |
dc.description.seriesinformation | Computer Graphics Forum | en_US |
dc.description.volume | 22 | en_US |
dc.identifier.doi | 10.1111/1467-8659.00691 | en_US |
dc.identifier.issn | 1467-8659 | en_US |
dc.identifier.pages | 433-440 | en_US |
dc.identifier.uri | https://doi.org/10.1111/1467-8659.00691 | en_US |
dc.publisher | Blackwell Publishers, Inc and the Eurographics Association | en_US |
dc.title | Shadow Volumes on Programmable Graphics Hardware | en_US |