Network Analysis for Financial Fraud Detection

dc.contributor.authorLeite, Roger A.en_US
dc.contributor.authorGschwandtner, Theresiaen_US
dc.contributor.authorMiksch, Silviaen_US
dc.contributor.authorGstrein, Erichen_US
dc.contributor.authorKuntner, Johannesen_US
dc.contributor.editorAnna Puig and Renata Raidouen_US
dc.date.accessioned2018-06-02T17:55:46Z
dc.date.available2018-06-02T17:55:46Z
dc.date.issued2018
dc.description.abstractSecurity and quality are main concerns for private and public financial institutions. Data mining techniques based on the profiles of customers of a financial institution are commonly used to avoid fraud and financial damage. However, these approaches often are limited to the analysis of individual customers which hinders the detection of fraudulent networks. We propose a Visual Analytics approach for supporting and fine-tuning customers' network analysis, thus, reducing false-negative alarms of frauds.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationEuroVis 2018 - Posters
dc.identifier.doi10.2312/eurp.20181120
dc.identifier.isbn978-3-03868-065-9
dc.identifier.pages21-23
dc.identifier.urihttps://doi.org/10.2312/eurp.20181120
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurp20181120
dc.publisherThe Eurographics Associationen_US
dc.subjectHuman
dc.subjectCentered Computing
dc.subjectVisual Analytics
dc.subjectInformation Visualization
dc.subjectTime Series Data
dc.subjectBusiness and Finance Visualization
dc.subjectFinancial Fraud Detection
dc.subjectFinancial Fraud Analysis
dc.titleNetwork Analysis for Financial Fraud Detectionen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
021-023.pdf
Size:
595.45 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1014-file1.mp4
Size:
40 MB
Format:
Unknown data format