FR-glyphs for Multidimensional Categorical Data

dc.contributor.authorCanlon, Delorean C.en_US
dc.contributor.authorPaulovich, Fernandoen_US
dc.contributor.authorTennekes, Martijnen_US
dc.contributor.editorTominski, Christianen_US
dc.contributor.editorWaldner, Manuelaen_US
dc.contributor.editorWang, Beien_US
dc.date.accessioned2024-05-17T18:47:42Z
dc.date.available2024-05-17T18:47:42Z
dc.date.issued2024
dc.description.abstractMultivariate categorical data analysis is challenging, especially when geographical information is present. Despite the widespread existence of such datasets, the current visualization solutions only typically represent frequencies of attributes, which can be misleading if uncorrelated attributes exist. We present the frequency-relation-glyphs, or FR-glyphs, as an alternative solution for these issues. FR-glyphs can (1) show deviations in the attribute's frequencies and (2) relations between combined sets of attributes. Furthermore, they can be added to geographical maps to compare multiple regions, such as provinces. We used the Bestand geRegistreerde Ongevallen in Nederland (BRON) dataset, which includes bicycle incidents, to show the usefulness of the FR-glyphs and evaluate them with stakeholders.en_US
dc.description.sectionheadersInteraction and Space
dc.description.seriesinformationEuroVis 2024 - Short Papers
dc.identifier.doi10.2312/evs.20241061
dc.identifier.isbn978-3-03868-251-6
dc.identifier.pages5 pages
dc.identifier.urihttps://doi.org/10.2312/evs.20241061
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/evs20241061
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Visualization design and evaluation methods
dc.subjectHuman centered computing → Visualization design and evaluation methods
dc.titleFR-glyphs for Multidimensional Categorical Dataen_US
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
05_evs20241061.pdf
Size:
848.31 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1052-i10.mp4
Size:
3.56 MB
Format:
Video MP4
No Thumbnail Available
Name:
1052-i7.mp4
Size:
59.98 MB
Format:
Video MP4
Collections