Data-Dependent MLS for Faithful Surface Approximation

dc.contributor.authorLipman, Yaronen_US
dc.contributor.authorCohen-Or, Danielen_US
dc.contributor.authorLevin, Daviden_US
dc.contributor.editorAlexander Belyaev and Michael Garlanden_US
dc.date.accessioned2014-01-29T09:43:06Z
dc.date.available2014-01-29T09:43:06Z
dc.date.issued2007en_US
dc.description.abstractIn this paper we present a high-fidelity surface approximation technique that aims at a faithful reconstruction of piecewise-smooth surfaces from a scattered point set. The presented method builds on the Moving Least-Squares (MLS) projection methodology, but introduces a fundamental modification: While the classical MLS uses a fixed approximation space, i.e., polynomials of a certain degree, the new method is data-dependent. For each projected point, it finds a proper local approximation space of piecewise polynomials (splines). The locally constructed spline encapsulates the local singularities which may exist in the data. The optional singularity for this local approximation space is modeled via a Singularity Indicator Field (SIF) which is computed over the input data points. We demonstrate the effectiveness of the method by reconstructing surfaces from real scanned 3D data, while being faithful to their most delicate features.en_US
dc.description.seriesinformationGeometry Processingen_US
dc.identifier.isbn978-3-905673-46-3en_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttps://doi.org/10.2312/SGP/SGP07/059-067en_US
dc.publisherThe Eurographics Associationen_US
dc.titleData-Dependent MLS for Faithful Surface Approximationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
059-067.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format