Quadratic-Attraction Subdivision
dc.contributor.author | Karciauskas, Kestutis | en_US |
dc.contributor.author | Peters, Jorg | en_US |
dc.contributor.editor | Memari, Pooran | en_US |
dc.contributor.editor | Solomon, Justin | en_US |
dc.date.accessioned | 2023-06-30T06:18:24Z | |
dc.date.available | 2023-06-30T06:18:24Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The idea of improving multi-sided piecewise polynomial surfaces, by explicitly prescribing their behavior at a central surface point, allows for decoupling shape finding from enforcing local smoothness constraints. Quadratic-Attraction Subdivision determines the completion of a quadratic expansion at the central point to attract a differentiable subdivision surface towards bounded curvature, with good shape also in-the-large. | en_US |
dc.description.number | 5 | |
dc.description.sectionheaders | Meshing | |
dc.description.seriesinformation | Computer Graphics Forum | |
dc.description.volume | 42 | |
dc.identifier.doi | 10.1111/cgf.14900 | |
dc.identifier.issn | 1467-8659 | |
dc.identifier.pages | 11 pages | |
dc.identifier.uri | https://doi.org/10.1111/cgf.14900 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.1111/cgf14900 | |
dc.publisher | The Eurographics Association and John Wiley & Sons Ltd. | en_US |
dc.subject | CCS Concepts: Computing methodologies -> Parametric curve and surface models; Mathematics of computing -> Continuous functions | |
dc.subject | Computing methodologies | |
dc.subject | Parametric curve and surface models | |
dc.subject | Mathematics of computing | |
dc.subject | Continuous functions | |
dc.title | Quadratic-Attraction Subdivision | en_US |
Files
Original bundle
1 - 1 of 1