Customized Summarizations of Visual Data Collections

Loading...
Thumbnail Image
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd
Abstract
We propose a framework to generate customized summarizations of visual data collections, such as collections of images, materials, 3D shapes, and 3D scenes. We assume that the elements in the visual data collections can be mapped to a set of vectors in a feature space, in which a fitness score for each element can be defined, and we pose the problem of customized summarizations as selecting a subset of these elements. We first describe the design choices a user should be able to specify for modeling customized summarizations and propose a corresponding user interface. We then formulate the problem as a constrained optimization problem with binary variables and propose a practical and fast algorithm based on the alternating direction method of multipliers (ADMM). Our results show that our problem formulation enables a wide variety of customized summarizations, and that our solver is both significantly faster than state‐of‐the‐art commercial integer programming solvers and produces better solutions than fast relaxation‐based solvers.
Description

        
@article{
10.1111:cgf.14336
, journal = {Computer Graphics Forum}, title = {{
Customized Summarizations of Visual Data Collections
}}, author = {
Yuan, Mengke
and
Ghanem, Bernard
and
Yan, Dong‐Ming
and
Wu, Baoyuan
and
Zhang, Xiaopeng
and
Wonka, Peter
}, year = {
2021
}, publisher = {
© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd
}, ISSN = {
1467-8659
}, DOI = {
10.1111/cgf.14336
} }
Citation
Collections