Anisotropy and Cross Fields

dc.contributor.authorSimons, Lanceen_US
dc.contributor.authorAmenta, Ninaen_US
dc.contributor.editorHu, Ruizhenen_US
dc.contributor.editorLefebvre, Sylvainen_US
dc.date.accessioned2024-06-20T07:54:54Z
dc.date.available2024-06-20T07:54:54Z
dc.date.issued2024
dc.description.abstractWe consider a cross field, possibly with singular points of valence 3 or 5, in which all streamlines are finite, and either end on the boundary or form cycles. We show that we can always assign lengths to the two cross field directions to produce an anisotropic orthogonal frame field. There is a one-dimensional family of such length functions, and we optimize within this family so that the two lengths are everywhere as similar as possible. This gives a numerical bound on the minimal anisotropy of any quad mesh exactly following the input cross field. We also show how to remove some limit cycles.en_US
dc.description.number5
dc.description.sectionheadersMeshing
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume43
dc.identifier.doi10.1111/cgf.15132
dc.identifier.issn1467-8659
dc.identifier.pages9 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.15132
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf15132
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Mesh geometry models; Shape analysis
dc.subjectComputing methodologies → Mesh geometry models
dc.subjectShape analysis
dc.titleAnisotropy and Cross Fieldsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
v43i5_05_cgf15132.pdf
Size:
15.69 MB
Format:
Adobe Portable Document Format
Collections