On Transfinite Barycentric Coordinates
dc.contributor.author | Belyaev, Alexander | en_US |
dc.contributor.editor | Alla Sheffer and Konrad Polthier | en_US |
dc.date.accessioned | 2014-01-29T08:14:02Z | |
dc.date.available | 2014-01-29T08:14:02Z | |
dc.date.issued | 2006 | en_US |
dc.description.abstract | A general construction of transfinite barycentric coordinates is obtained as a simple and natural generalization of Floater's mean value coordinates [Flo03, JSW05b]. The Gordon-Wixom interpolation scheme [GW74] and transfinite counterparts of discrete harmonic and Wachspress-Warren coordinates are studied as particular cases of that general construction. Motivated by finite element/volume applications, we study capabilities of transfinite barycentric interpolation schemes to approximate harmonic and quasi-harmonic functions. Finally we establish and analyze links between transfinite barycentric coordinates and certain inverse problems of differential and convex geometry. | en_US |
dc.description.seriesinformation | Symposium on Geometry Processing | en_US |
dc.identifier.isbn | 3-905673-24-X | en_US |
dc.identifier.issn | 1727-8384 | en_US |
dc.identifier.uri | https://doi.org/10.2312/SGP/SGP06/089-099 | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.title | On Transfinite Barycentric Coordinates | en_US |
Files
Original bundle
1 - 1 of 1