Fast Analytic Soft Shadows from Area Lights

Loading...
Thumbnail Image
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
In this paper, we present the first method to analytically compute shading and soft shadows for physically based BRDFs from arbitrary area lights.We observe that for a given shading point, shadowed radiance can be computed by analytically integrating over the visible portion of the light source using Linearly Transformed Cosines (LTCs). We present a structured approach to project, re-order and horizon-clip spherical polygons of arbitrary lights and occluders. The visible portion is then computed by multiple repetitive set difference operations. Our method produces noise-free shading and soft-shadows and outperforms raytracing within the same compute budget. We further optimize our algorithm for convex light and occluder meshes by projecting the silhouette edges as viewed from the shading point to a spherical polygon, and performing one set difference operation thereby achieving a speedup of more than 2x. We analyze the run-time performance of our method and show rendering results on several scenes with multiple light sources and complex occluders. We demonstrate superior results compared to prior work that uses analytic shading with stochastic shadow computation for area lights.
Description

        
@inproceedings{
10.2312:sr.20211295
, booktitle = {
Eurographics Symposium on Rendering - DL-only Track
}, editor = {
Bousseau, Adrien and McGuire, Morgan
}, title = {{
Fast Analytic Soft Shadows from Area Lights
}}, author = {
Kt, Aakash
and
Sakurikar, Parikshit
and
Narayanan, P. J.
}, year = {
2021
}, publisher = {
The Eurographics Association
}, ISSN = {
1727-3463
}, ISBN = {
978-3-03868-157-1
}, DOI = {
10.2312/sr.20211295
} }
Citation