Honeycomb Plots: Visual Enhancements for Hexagonal Maps

dc.contributor.authorTrautner, Thomasen_US
dc.contributor.authorSbardellati, Maximilianen_US
dc.contributor.authorStoppel, Sergejen_US
dc.contributor.authorBruckner, Stefanen_US
dc.contributor.editorBender, Janen_US
dc.contributor.editorBotsch, Marioen_US
dc.contributor.editorKeim, Daniel A.en_US
dc.date.accessioned2022-09-26T09:28:49Z
dc.date.available2022-09-26T09:28:49Z
dc.date.issued2022
dc.description.abstractAggregation through binning is a commonly used technique for visualizing large, dense, and overplotted two-dimensional data sets. However, aggregation can hide nuanced data-distribution features and complicates the display of multiple data-dependent variables, since color mapping is the primary means of encoding. In this paper, we present novel techniques for enhancing hexplots with spatialization cues while avoiding common disadvantages of three-dimensional visualizations. In particular, we focus on techniques relying on preattentive features that exploit shading and shape cues to emphasize relative value differences. Furthermore, we introduce a novel visual encoding that conveys information about the data distributions or trends within individual tiles. Based on multiple usage examples from different domains and real-world scenarios, we generate expressive visualizations that increase the information content of classic hexplots and validate their effectiveness in a user study.en_US
dc.description.sectionheadersSession II
dc.description.seriesinformationVision, Modeling, and Visualization
dc.identifier.doi10.2312/vmv.20221205
dc.identifier.isbn978-3-03868-189-2
dc.identifier.pages65-73
dc.identifier.pages9 pages
dc.identifier.urihttps://doi.org/10.2312/vmv.20221205
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/vmv20221205
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing --> Visualization techniques; Visualization theory, concepts and paradigms
dc.subjectHuman centered computing
dc.subjectVisualization techniques
dc.subjectVisualization theory
dc.subjectconcepts and paradigms
dc.titleHoneycomb Plots: Visual Enhancements for Hexagonal Mapsen_US
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
065-073.pdf
Size:
13.95 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1019_mm.mp4
Size:
275.64 MB
Format:
Unknown data format
No Thumbnail Available
Name:
paper1019_mm.zip
Size:
38.85 KB
Format:
Zip file
Collections