Moving Least Squares Coordinates
Loading...
Date
2010
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We propose a new family of barycentric coordinates that have closed-forms for arbitrary 2D polygons. These coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates have linear precision, but we can create coordinates that reproduce polynomials of a set degree m as long as degree m polynomials are specified along the boundary of the polygon. We also show how to extend these coordinates to interpolate derivatives specified on the boundary.
Description
@article{10.1111:j.1467-8659.2010.01760.x,
journal = {Computer Graphics Forum},
title = {{Moving Least Squares Coordinates}},
author = {Josiah Manson and Scott Schaefer},
year = {2010},
publisher = {},
DOI = {10.1111/j.1467-8659.2010.01760.x}
}