RGB-D Neural Radiance Fields: Local Sampling for Faster Training
Loading...
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
Learning a 3D representation of a scene has been a challenging problem for decades in computer vision. Recent advancements in implicit neural representation from images using neural radiance fields(NeRF) have shown promising results. Some of the limitations of previous NeRF based methods include longer training time, and inaccurate underlying geometry. The proposed method takes advantage of RGB-D data to reduce training time by leveraging depth sensing to improve local sampling. This paper proposes a depth-guided local sampling strategy and a smaller neural network architecture to achieve faster training time without compromising quality.
Description
CCS Concepts: Computing methodologies --> Appearance and texture representations
@inproceedings{10.2312:egp.20221001,
booktitle = {Eurographics 2022 - Posters},
editor = {Sauvage, Basile and Hasic-Telalovic, Jasminka},
title = {{RGB-D Neural Radiance Fields: Local Sampling for Faster Training}},
author = {Dey, Arnab and Comport, Andrew I.},
year = {2022},
publisher = {The Eurographics Association},
ISSN = {1017-4656},
ISBN = {978-3-03868-171-7},
DOI = {10.2312/egp.20221001}
}