Nonobtuse Remeshing and Mesh Decimation

dc.contributor.authorLi, J. Y. S.en_US
dc.contributor.authorZhang, H.en_US
dc.contributor.editorAlla Sheffer and Konrad Polthieren_US
dc.date.accessioned2014-01-29T08:14:09Z
dc.date.available2014-01-29T08:14:09Z
dc.date.issued2006en_US
dc.description.abstractQuality meshing in 2D and 3D domains is an important problem in geometric modeling and scientific computing. We are concerned with triangle meshes having only nonobtuse angles. Specifically, we propose a solution for guaranteed nonobtuse remeshing and nonobtuse mesh decimation. Our strategy for the remeshing problem is to first convert an input mesh, using a modified Marching Cubes algorithm, into a rough approximate mesh that is guaranteed to be nonobtuse. We then apply iterative "deform-to-fit" via constrained optimization to obtain a high-quality approximation, where the search space is restricted to be the set of nonobtuse meshes having a fixed connectivity. With a detailed nonobtuse mesh in hand, we apply constrained optimization again, driven by a quadric-based error, to obtain a hierarchy of nonobtuse meshes via mesh decimation.en_US
dc.description.seriesinformationSymposium on Geometry Processingen_US
dc.identifier.isbn3-905673-24-Xen_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttps://doi.org/10.2312/SGP/SGP06/235-238en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modelingen_US
dc.titleNonobtuse Remeshing and Mesh Decimationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
235-238.pdf
Size:
170.84 KB
Format:
Adobe Portable Document Format