Provably Good Surface Sampling and Approximation
Loading...
Date
2003
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
We present an algorithm for meshing surfaces that is a simple adaptation of a greedy "farthest point" technique proposed by Chew. Given a surface S, it progressively adds points on S and updates the 3-dimensional Delaunay triangulation of the points. The method is very simple and works in 3d-space without requiring to parameterize the surface. Taking advantage of recent results on the restricted Delaunay triangulation, we prove that the algorithm can generate good samples on S as well as triangulated surfaces that approximate S. More precisely, we show that the restricted Delaunay triangulation Del??S of the points has the same topology type as S, that the Hausdorff distance between Del??S and S can be made arbitrarily small, and that we can bound the aspect ratio of the facets of Del??S. The algorithm has been implemented and we report on experimental results that provide evidence that it is very effective in practice. We present results on implicit surfaces, on CSG models and on polyhedra. Although most of our theoretical results are given for smooth closed surfaces, the method is quite robust in handling smooth surfaces with boundaries, and even non-smooth surfaces.
Description
@inproceedings{:10.2312/SGP/SGP03/009-019,
booktitle = {Eurographics Symposium on Geometry Processing},
editor = {Leif Kobbelt and Peter Schroeder and Hugues Hoppe},
title = {{Provably Good Surface Sampling and Approximation}},
author = {Boissonnat, J-D. and Oudot, S.},
year = {2003},
publisher = {The Eurographics Association},
ISSN = {1727-8384},
ISBN = {3-905673-06-1},
DOI = {/10.2312/SGP/SGP03/009-019}
}