On Approximation of the Laplace-Beltrami Operator and the Willmore Energy of Surfaces

dc.contributor.authorHildebrandt, Klausen_US
dc.contributor.authorPolthier, Konraden_US
dc.contributor.editorMario Botsch and Scott Schaeferen_US
dc.date.accessioned2015-02-27T15:03:11Z
dc.date.available2015-02-27T15:03:11Z
dc.date.issued2011en_US
dc.description.abstractDiscrete Laplace Beltrami operators on polyhedral surfaces play an important role for various applications in geometry processing and related areas like physical simulation or computer graphics. While discretizations of the weak Laplace Beltrami operator are well-studied, less is known about the strong form. We present a principle for constructing strongly consistent discrete Laplace Beltrami operators based on the cotan weights. The consistency order we obtain, improves previous results reported for the mesh Laplacian. Furthermore, we prove consistency of the discrete Willmore energies corresponding to the discrete Laplace Beltrami operators.en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.identifier.doi10.1111/j.1467-8659.2011.02025.xen_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2011.02025.xen_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectGeometric algorithmsen_US
dc.subjectlanguagesen_US
dc.subjectsystems G.1.8 [Numerical Analysis]en_US
dc.subjectPartial Differential Equationsen_US
dc.subjectFinite element methodsen_US
dc.titleOn Approximation of the Laplace-Beltrami Operator and the Willmore Energy of Surfacesen_US
Files