Efficient Max-Norm Distance Computation and Reliable Voxelization

dc.contributor.authorVaradhan, Gokulen_US
dc.contributor.authorKrishnan, Shankaren_US
dc.contributor.authorKim, Young J.en_US
dc.contributor.authorDiggavi, Suhasen_US
dc.contributor.authorManocha, Dineshen_US
dc.contributor.editorLeif Kobbelt and Peter Schroeder and Hugues Hoppeen_US
dc.date.accessioned2014-01-29T08:19:41Z
dc.date.available2014-01-29T08:19:41Z
dc.date.issued2003en_US
dc.description.abstractWe present techniques to efficiently compute the distance under max-norm between a point and a wide class of geometric primitives. We formulate the distance computation as an optimization problem and use this framework to design efficient algorithms for convex polytopes, algebraic primitives and triangulated models. We extend them to handle large models using bounding volume hierarchies, and use rasterization hardware followed by local refinement for higher-order primitives. We use the max-norm distance computation algorithm to design a reliable voxel-intersection test to determine whether the surface of a primitive intersects a voxel.We use this test to perform reliable voxelization of solids and generate adaptive distance fields that provides a Hausdorff distance guarantee between the boundary of the original primitives and the reconstructed surface.en_US
dc.description.seriesinformationEurographics Symposium on Geometry Processingen_US
dc.identifier.isbn3-905673-06-1en_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttps://doi.org/10.2312/SGP/SGP03/116-126en_US
dc.publisherThe Eurographics Associationen_US
dc.titleEfficient Max-Norm Distance Computation and Reliable Voxelizationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
116-126.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format