DepthCut: Improved Depth Edge Estimation Using Multiple Unreliable Channels

dc.contributor.authorGuerrero, Paulen_US
dc.contributor.authorWinnemöller, Holgeren_US
dc.contributor.authorLi, Wilmoten_US
dc.contributor.authorMitra, Niloy J.en_US
dc.contributor.editorJakob Andreas Bærentzen and Klaus Hildebrandten_US
dc.date.accessioned2017-07-02T17:44:40Z
dc.date.available2017-07-02T17:44:40Z
dc.date.issued2017
dc.description.abstractIn the context of scene understanding, a variety of methods exists to estimate different information channels from mono or stereo images, including disparity, depth, and normals. Although several advances have been reported in the recent years for these tasks, the estimated information is often imprecise particularly near depth contours or creases. Studies have however shown that precisely such depth edges carry critical cues for the perception of shape, and play important roles in tasks like depth-based segmentation or foreground selection. Unfortunately, the currently extracted channels often carry conflicting signals, making it difficult for subsequent applications to effectively use them. In this paper, we focus on the problem of obtaining high-precision depth edges by jointly analyzing such unreliable information channels. We propose DEPTHCUT, a data-driven fusion of the channels using a convolutional neural network trained on a large dataset with known depth. The resulting depth edges can be used for segmentation, decomposing a scene into segments with relatively smooth depth, or improving the accuracy of the depth estimate near depth edges by constraining its gradients to agree with these edges. Quantitative experiments show that our depth edges result in an improved segmentation performance compared to a more naive channel fusion. Qualitatively, we demonstrate that the depth edges can be used for superior segmentation and an improved depth estimate near depth edges.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationSymposium on Geometry Processing 2017- Posters
dc.identifier.doi10.2312/sgp.20171202
dc.identifier.isbn978-3-03868-047-5
dc.identifier.issn1727-8384
dc.identifier.pages3-4
dc.identifier.urihttps://doi.org/10.2312/sgp.20171202
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sgp20171202
dc.publisherThe Eurographics Associationen_US
dc.titleDepthCut: Improved Depth Edge Estimation Using Multiple Unreliable Channelsen_US
Files
Original bundle
Now showing 1 - 5 of 8
Loading...
Thumbnail Image
Name:
003-004.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
depthedges.zip
Size:
2.95 MB
Format:
Zip file
No Thumbnail Available
Name:
depthedges_globalized.zip
Size:
754.36 KB
Format:
Zip file
No Thumbnail Available
Name:
groundtruth.zip
Size:
3.61 MB
Format:
Zip file
No Thumbnail Available
Name:
inputchannels.zip
Size:
125.98 MB
Format:
Zip file