Schrödinger Operator for Sparse Approximation of 3D Meshes
dc.contributor.author | Choukroun, Yoni | en_US |
dc.contributor.author | Pai, Gautam | en_US |
dc.contributor.author | Kimmel, Ron | en_US |
dc.contributor.editor | Jakob Andreas Bærentzen and Klaus Hildebrandt | en_US |
dc.date.accessioned | 2017-07-02T17:44:42Z | |
dc.date.available | 2017-07-02T17:44:42Z | |
dc.date.issued | 2017 | |
dc.description.abstract | We introduce a Schrödinger operator for spectral approximation of meshes representing surfaces in 3D. The operator is obtained by modifying the Laplacian with a potential function which defines the rate of oscillation of the harmonics on different regions of the surface. We design the potential using a vertex ordering scheme which modulates the Fourier basis of a 3D mesh to focus on crucial regions of the shape having high-frequency structures and employ a sparse approximation framework to maximize compression performance. The combination of the spectral geometry of the Hamiltonian in conjunction with a sparse approximation approach outperforms existing spectral compression schemes. | en_US |
dc.description.sectionheaders | Posters | |
dc.description.seriesinformation | Symposium on Geometry Processing 2017- Posters | |
dc.identifier.doi | 10.2312/sgp.20171205 | |
dc.identifier.isbn | 978-3-03868-047-5 | |
dc.identifier.issn | 1727-8384 | |
dc.identifier.pages | 9-10 | |
dc.identifier.uri | https://doi.org/10.2312/sgp.20171205 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/sgp20171205 | |
dc.publisher | The Eurographics Association | en_US |
dc.subject | I.3.5 [Computer Graphics] | |
dc.subject | Computational Geometry and Object Modeling | |
dc.subject | Curve | |
dc.subject | surface | |
dc.subject | solid | |
dc.subject | and object representations | |
dc.title | Schrödinger Operator for Sparse Approximation of 3D Meshes | en_US |
Files
Original bundle
1 - 1 of 1