Schrödinger Operator for Sparse Approximation of 3D Meshes

dc.contributor.authorChoukroun, Yonien_US
dc.contributor.authorPai, Gautamen_US
dc.contributor.authorKimmel, Ronen_US
dc.contributor.editorJakob Andreas Bærentzen and Klaus Hildebrandten_US
dc.date.accessioned2017-07-02T17:44:42Z
dc.date.available2017-07-02T17:44:42Z
dc.date.issued2017
dc.description.abstractWe introduce a Schrödinger operator for spectral approximation of meshes representing surfaces in 3D. The operator is obtained by modifying the Laplacian with a potential function which defines the rate of oscillation of the harmonics on different regions of the surface. We design the potential using a vertex ordering scheme which modulates the Fourier basis of a 3D mesh to focus on crucial regions of the shape having high-frequency structures and employ a sparse approximation framework to maximize compression performance. The combination of the spectral geometry of the Hamiltonian in conjunction with a sparse approximation approach outperforms existing spectral compression schemes.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationSymposium on Geometry Processing 2017- Posters
dc.identifier.doi10.2312/sgp.20171205
dc.identifier.isbn978-3-03868-047-5
dc.identifier.issn1727-8384
dc.identifier.pages9-10
dc.identifier.urihttps://doi.org/10.2312/sgp.20171205
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sgp20171205
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]
dc.subjectComputational Geometry and Object Modeling
dc.subjectCurve
dc.subjectsurface
dc.subjectsolid
dc.subjectand object representations
dc.titleSchrödinger Operator for Sparse Approximation of 3D Meshesen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
009-010.pdf
Size:
689.35 KB
Format:
Adobe Portable Document Format