41-Issue 8
Permanent URI for this collection
Browse
Browsing 41-Issue 8 by Author "Chentanez, Nuttapong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Learning Physics with a Hierarchical Graph Network(The Eurographics Association and John Wiley & Sons Ltd., 2022) Chentanez, Nuttapong; Jeschke, Stefan; Müller, Matthias; Macklin, Miles; Dominik L. Michels; Soeren PirkWe propose a hierarchical graph for learning physics and a novel way to handle obstacles. The finest level of the graph consist of the particles itself. Coarser levels consist of the cells of sparse grids with successively doubling cell sizes covering the volume occupied by the particles. The hierarchical structure allows for the information to propagate at great distance in a single message passing iteration. The novel obstacle handling allows the simulation to be obstacle aware without the need for ghost particles. We train the network to predict effective acceleration produced by multiple sub-steps of 3D multi-material material point method (MPM) simulation consisting of water, sand and snow with complex obstacles. Our network produces lower error, trains up to 7.0X faster and inferences up to 11.3X faster than [SGGP*20]. It is also, on average, about 3.7X faster compared to Taichi Elements simulation running on the same hardware in our tests.Item Physically Based Shape Matching(The Eurographics Association and John Wiley & Sons Ltd., 2022) Müller, Matthias; Macklin, Miles; Chentanez, Nuttapong; Jeschke, Stefan; Dominik L. Michels; Soeren PirkThe shape matching method is a popular approach to simulate deformable objects in interactive applications due to its stability and simplicity. An important feature is that there is no need for a mesh since the method works on arbitrary local groups within a set of particles. A major drawback of shape matching is the fact that it is geometrically motivated and not derived from physical principles which makes calibration difficult. The fact that the method does not conserve volume can yield visual artifacts, e.g. when a tire is compressed but does not bulge. In this paper we present a new meshless simulation method that is related to shape matching but derived from continuous constitutive models. Volume conservation and stiffness can be specified with physical parameters. Further, if the elements of a tetrahedral mesh are used as groups, our method perfectly reproduces FEM based simulations.